5G MIMO

5G Millimeter Wave Frequencies and Mobile Networks Technology Whitepaper

5G Millimeter Wave Frequencies and Mobile Networks Technology Whitepaper

Drawing on expertise from participants at 14 technology leaders in the wireless industry, including carriers, operators, device manufacturers, and providers of wireless simulation tools, the International Wireless Industry Consortium (IWPC) created a comprehensive report that identifies the key features, obstacles, and potential solutions for deployment of mmWave for 5G.

Using EM Simulation for 5G Design E-Book

Using EM Simulation for 5G Design E-Book

Download examples that demonstrate how EM simulation software solves challenges related to 5G and MIMO. Examples include MIMO and array design, 5G urban small cells, mmWave and beamforming

Using Modeling and Simulation to Assess Challenges and Solutions for 5G Fixed Wireless Access

Using Modeling and Simulation to Assess Challenges and Solutions for 5G Fixed Wireless Access

One of the planned technologies that may change the digital landscape in the early rollouts of 5G is fixed wireless access (FWA), which will provide new and more flexible wireless solutions for broadband for the last mile to the home. In this paper, we use new modeling and simulation techniques to investigate some of the most critical challenges that FWA faces for operation in the physical environment at millimeter waves.

Simulation of Beamforming using FD-MIMO for LTE-Advanced Pro in an Urban Small Cell

Simulation of Beamforming using FD-MIMO for LTE-Advanced Pro in an Urban Small Cell


This presentation demonstrates a new predictive tool for simulating Full Dimension Multiple Input, Multiple Output (FD-MIMO) in urban environments.  We evaluate a hypothetical small cell base station employing FD-MIMO for cases using different numbers of transmit antennas, then analyze predicted multipath in the environment and compare performance of beamforming techniques for each of the simulated cases. 

Simulation of Beamforming by Massive MIMO Antennas in Dense Urban Environments

Simulation of Beamforming by Massive MIMO Antennas in Dense Urban Environments

This presentation demonstrates a new predictive capability for simulating massive MIMO antennas and beamforming in dense urban propagation environments.  Remcom's unique approach allows us to predict the signal-to-interference-plus-noise ratio (SINR) at specific device locations and the actual physical beams formed using these techniques, including unintentional distortions caused by pilot contamination.

Wireless InSite Simulation of MIMO Antennas for 5G Telecommunications

Wireless InSite Simulation of MIMO Antennas for 5G Telecommunications

To keep up with rising demand and new technologies, the wireless industry is researching a wide array of solutions for 5G, including Massive MIMO. Remcom’s Wireless InSite provides an efficient method to predict channel characteristics for large-array MIMO antennas in complex multipath environments.